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Abstract -The effect of solidification on the onset of surface tension driven convection in a reduced gravity 
environment is studied. Two simple but physically realistic configurations representing the solidification ofa 
simple material are analyzed. The analysis shows that as a result of the solidification process the critical 
Marangoni number is shifted lo lower values indicating that solidification has a destabilizing effect upon the 
liquid. From this result it is concluded that convection can be brought about in the liquid phase at lower 
Marangoni numbers when solidification is present than when it is not. The effects of other parameters 
introduced by the solidification process are analyzed and discussed. 

NOMENCLATURE Greek symbols 

constants of integration ; 
constant defined in equation (4.5); 
complex time constant, = (I~, + iao,; 
Biot modulus, = qd/k, ; 
aa/aT; 
specific heat ratio, = cp, Jcpz ; 
liquid layer thickness; 

differential operator, = $ ; 

thermal conductivity ratio, = k,/k,; 
thermal conductivity; 
latent heat of fusion ; 

Marangoni number, = (ao/aTxarla2)& ; 

Prandtl number, = v,/K, ; 

= qoW,Ui - U; 

heat-transfer coefficient defined in equation 
(3Sb); 
heat flux at the lower surface of the solid for 
the second model ; 
= v,d/v,; 

the position of the solid-liquid interface; 
temperature ; 
temperature of solidification ; 
temperature of the lower surface of the solid ; 
temperature of the upper surface of the 
liquid ; 
time ; 
velocity vector; 
perturbation velocity; 
speed of the solid-liquid interface; 
perturbation velocity component in the z- 
direction; 
basic flow velocity component in the z- 
direction. 

a, perturbation wave number; 

A non-dimensional temperature gradient of 
the basic flow for the first model; 

4 thermal diffusivity ratio KJK, ; 

6, density ratio p,/p, ; 
4 = Uc,,G5 - Tl) for the first model ; 

= L/cp, (T2 - T,) for the second model ; 

4 characteristic values of the solution in equa- 
tions (4.4) and (4.5); 

1 

PI 

defined in equation (4.5); 
dynamic viscosity of melt; 

vlr kinematic viscosity of melt = j+/p,; 

Z, = (T, - LKdaldWCc,v,; 
Q, coefficient of surface tension ; 

*09 a constant value of surface tension ; 
8, perturbation temperature. 

Superscripts 

9 perturbation quantity. 

Subscripts 

1, liquid phase; 

s, solid phase. 

A GREAT deal of interest has recently been generated in 
the possibility of producing new materials in the 
reduced gravity environment that will be provided 
during the forthcoming missions of Spacelab [l, 21. 
The range of possibilities extends from producing large 
crystals of uniform properties to manufacturing ma- 
terials with unique properties. Most of these processes 
involve solidifying materials from the liquid state. 
Convective motion within the liquid during solidifi- 
cation can influence the local material composition 
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and the shape of the solid-liquid interface and can 
result in solids with nonuniform properties and crystal 
defects. The microgravity environment of Spacelab is 
being viewed as one in which the buoyancy forces are 
eliminated so that convection driven by thermal 
gradients will not occur. It is hoped that this will lead 
to an improved solidification process. However, con- 
vection may occur for other reasons and whether 
convection is negligible or ‘not during solidification 
constitutes a vita1 question bearing on the value of 
future material processing in a microgravity environ- 
ment. Little infor~tion exists presently on convection 
during solidification under such circumstances. 

Although buoyancy driven convection may be sup- 
pressed in the microgravity environment through the 
reduced Rayleigh number, Marangoni type convec- 
tion may take place [3]. Thii latter type of convection 
arises when nonunifo~iti~ in the surface tension are 
present in a fluid which is subjected to a normal 
temperature gradient [4, S]. Since most solidification 
processes take place in molten zones with strong 
temperature gradients, it is speculated that Marangoni 
flow will be of great importance in microgravity 
experiments. In the work reported here we will in- 
vestigate the effect of solidifi~tion at reduced gravity 
on the onset of Marangoni convection in the liquid 
phase. 

The analysis of the solidification problem in its 
entirety is quite complex. The formulation of the 
problem in its simplest general form leads to a 
nonlinear system of equations with moving boun- 
daries, which makes it quite intractable [6]. Some of 
the recent advances towards the solution of this 
problem may be found in the books of Rubenstein [7], 
Ockendon and Hodgkins [S], and Wilson et al. [9]. 
Since interest in the present work is in the conditions 
for the onset of convection, the total soli~fi~tion 
problem will not be considered but rather a stability 
analysis will be performed on a material system 
undergoing solidification. 

One of the earliest investigations involving stability 
andysis for a solidifying system was that of Mullins 
and Sekerka [lo] in which the stability of the 
solid-liquid interface was studied for a binary alloy. 
This work was followed by the study of Wollkind and 
Segel [ 111, in which the same problem was examined 
using a nonlinear stability analysis. The mean state of 
both of these analyses was one-dimensional with both 
the liquid and solid phases extending to infinity. In 
addition, these works were not concerned with the 
convective motion in either the mean or the perturbed 
states. However, the analyses were of considerable 
value in establishing the stability criteria for the 
interface in terms of the concentration and tempera- 
ture gradients of the mean state. 

Schubert et al. [ 121 applied linear stability analysis 
to a system of two liquids of infinite depth which were 
undergoing a phase change. The convective motion 
caused by buoyancy forces was examined for this 
configuration. However, little information is available 

on the effect of the coupiing between phase change and 
surface tension driven convection upon the stability of 
the liquid phase. 

These previous studies have examined a system of 
infinite depth. However, in some space processing 
appli~tio~ the melt layer can be expected to be 
relatively shallow and a slightly different analysis is 
necessary. In such circumstances, and in the absence of 
gravity, it is anticipated that surface tension effects at 
the top of the melt can influence the convection in the 
melt, and this may in turn affect the stability and shape 
of the solid-liquid interface. It should be emphasized 
that in the absence ofgravity the melt layer need not be 
extremely shallow for the above-mentioned coupling 
to take place. In real physical situations, however, 
more complicated interactions between the various 
dynamic and thermodynamic processes, such as 
chemical reactions, mass diffusion and time depen- 
dence of the basic state, can infiuence the shape of the 
interface. For an up-to-date review of and exposition 
of the various influences on the stability of interfaces, 
the reader is referred to the excellent article by Miller 
{13] and the references contained therein. In the 
present work the coupling between surface tension 
effects and the solidi~~tion process is studied as a first 
attempt at understanding some of the underlying 
problems to be encountered in space processing of 
materials. 

In this study the stability of two simple solidifying 
systems which reflect physically realistic configu- 
rations is analyzed at zero gravity. The systems 
considered are solid-liquid systems of finite depth for a 
pure material which is undergoing a phase transition. 
The possibility of the onset of convection in the liquid 
phase is considered. Two configurations are analyzed. 
In the stationary process the phase boundary is 
stationary while in the constant rate process it is 
propagating at a constant speed. The details of the two 
models together with the stability analysis arc pre- 
sented in the next two sections. This is followed by a 
discussion of the results in Section 4. Finally, in the last 
section, a set ofconclusions is given together with some 
r~omm~dations that might be of benefit for the 
design and analysis of low gravity materials processing 
experiments. 

2. THE BASIC SI’ATE 

Solidification is basically a time-dependent process 
for a system of finite depth because of the movement of 
the ~tid-Iiquid interface. An analysis of the stability of 
such a time-dependent process is presently in the state 
of development. Therefore, it was necessary to apply 
the analysis to two special models which were sta- 
tionary or could be made stationary by a coordinate 
transformation. In this section the stationary mean 
state, which will be perturbed, is presented for each 
model 

For the first model consider a layer of fluid on top of 
a layer of solid in which the solid-liquid interface is 
stationary (stationary solidification process). Both the 
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solid and the liquid layers are infinite in the horizontal 
direction but are of finite depth. A sketch of this model 
is shown in Fig. 1. Since the solid-liquid interface is 
stationary in this case, the solidification process, 
through the latent heat, does not influence the mean 
state but will play a significant role in the perturbed 
state. Such a model may represent an extremely slow 
solidification process which might be. encountered in 
actual crystal growth experiments. 

The steady state temperature distribution in both 
the solid and the liquid phases, in the absence of any 
convection, can be shown to be a linear function of 
depth and is given by [ 141: 

T; = T, - (T, - T,)/K 

+ &{T, - G/K - W - UK)}, (2.1) 

II ={T.(K - I)+ q 

+ &[KTZ - T - T,(K - l)] 
I 
/K. (2.2) 

This solution was obtained by assuming constant 
temperatures at both the upper surface of the liquid 
and the lower surface of the solid, T, and T,, re- 
spectively. Also, the solid-liquid interface position is 
uniquely determined by the boundary conditions and 
is given by: 

s 4T, - 
K(T, - T,)' 

T2 T, > 

Note for this model thermodynamic and 
transport properties of both the solid and the liquid 
phases were taken to be constant. 

The second model (constant rate solidification) also 
consists of two adjacent, finite depth layers of solid and 
melt which are infinite in the horizontal direction and 
separated by a planar interface. However, in this case 
the solid-liquid interface is taken to propagate at a 
constant speed, up, in the vertical direction while melt is 
being continuously fed to the system to keep the melt 
depth constant. A sketch of this problem is given in 
Fig. 2. The upper surface of the liquid is maintained at 
a constant temperature T2 while the phase interface is 
at the liquid-solid equilibrium temperature Tw This 
model may represent a continuous solidification pro- 
cess which is being cooled at a wnstant rate, go, from 
the lower surface of the solid. From a balance of mass 

V Free surface T=T, 

Ltquld 

FIG. 1. Description sketch of the stationary solidification 
problem. 

FIG. 2. Description sketch of the constant rate solidification 
problem. 

and energy across the interface, the velocity in the 
liquid, which is in the direction of propagation of the 
interface, is found to be: 

iq = v,(l/fI - 1). 

In this problem the thermodynamic properties of both 
the solid and the liquid are taken to be different but 
wnstant throughout each layer. 

The temperature distributions in both the solid and 
liquid phases, subject to a constant temperature at the 
upper surface of the melt and a constant rate of heat 
loss at the lower surface of the solid, are given by [ 143 : 

f=T,+(' 
- T,){exp(- Q&W - 11 

1 - exp(- U&dK,) 
(2.5) 

s; = T, + k90/~,&) 

x exp( - u,+f/~,){l - exp( - u,J/K,)}. (2.6) 

The instantaneous position of the solid-liquid in- 
terface may be obtained from integrating the interface 
velocity, up which is given by the following transcen- 
dental equation : 

%+P(- %dK,) + UwJWKi - T,j 

x { 1 - exp( - u,,d/6~,)} - ’ = p&u,,. (2.7) 

Note that in this problem the solidification process 
enters both the mean state and the perturbed state. The 
above solutions are obtained after transforming the 
problem to a moving coordinate system attached to 
the planar solid-liquid interface via the transfor- 
mation x = c?, 2 = r’ - u,,t and t = < where the tilde 
indicate the original stationary coordinate system. 

J. LINEAR STABILITY ANALYSIS 

A. Stationary solidification process 
The conditions for the onset of convection in the 

liquid phase are determined through a linear stability 
analysis. Briefly, a perturbation is imposed on the 
original mean state and the fate of this perturbation 
with time is observed. If the perturbation decays with 
time then the original state is said to be stable, and if, 



194 BASIL N. ANTAR, FRANK G.COLLINS and GEORGE H.FICHTL 

on the other hand, it grows with time then the original 
state is unstable and convective motion will set in. To 
implement this analysis, the field variables are first 
decomposed into a mean and a perturbation com- 
ponent in the following form: 

T,= T;+ T;, 

T= 7;+ T;, (3.1) 

u = Ii + II’. 

These variabies are then substituted into the con- 
servation equations for mass, momentum and energy. 
Upon subtracting out the equations for the mean state, 
equations governing the perturbation functions are 
obtained. For a linear stability analysis these equa- 
tions are linearized resulting in the following set of 
equations governing the perturbation functions for the 
stationary solidification problem 

(3.2) 
(3.3) 

where 

vZ dZ a' a2 
=s+dy2+g 

In equation (3.3) 7; is the mean state temperature 
distribution which is given by expression (2.1). Also, 
the above equations have been made dimensionless 
with the following length, time, velocity and tempera- 
ture scales, respectively: d, K,/d’, d/K,, T2 - Tl. 

The boundary conditions for the perturbation fun- 
ctions may be obtained in a similar manner and for the 
present problem the conditions at the free surface of 
the liquid are: 

Condition (3.5~) is derived from the balance of the 
tangential forces at the free surface of the liquid where 
it is assumed that the surface tension is a linear 
function of temperature, i.e. 

a=ao+bT;. 

Condition (3.5a) is the so-called “radiation condition” 
which expresses the perturbation of the balance of heat 
conducted across the liquid with that convected away 
from the surface of the liquid. The conditions at the 
solid-liquid interface are : 

T; = 
awl 

T;=O; -=O, 
aZ 

(3.5d. e, f) 

k dT;_kdT; 
* az ’ az = -p&w'. w3) 

Condition (3.5g) is derived from a linearization of the 
energy balance at the interface with the added assump 
tion that the interface geometry is planar to a first 
order approximation (see [14] for further details on 
the derivation of this condition). The final condition 
needed for the complete description of the problem 
must be applied at the lower surface of the solid and is 
given by: 

T; = 0. (3.5h) 

The system of equations (3.2)-(3.4), together with 
the boundary conditions (3.5), constitutes a set of 
linear, homogeneous equations which admit a solution 
through separation of variables in the form: 

[w’. T:, T;] 

= [o(z), 8,(z), B,(z)] cosax exp(a,t). (3.6) 

This form of the solution represents a wave which has 
an amplitude in the z-direction and a wave number, a, 
while a0 is a constant. Such a form of the solution 
allows an arbitrary disturbance to be analyzed into a 
complete set of normal modes whereby the stability of 
each individual mode can be examined separately. For 
a general description it is a common practice to take u0 
to be a complex number, i.e. 

a() = a,, + io,,. 

Upon substituting this form ofthe solution (3.6) into 
the governing equations and the boundary conditions, 
a system of linear, homogeneous, ordinary differential 
equations with homogeneous boundary conditions 
results. Such a system constitutes an eigenvalue prob- 
lem for the eigenvalue uo. The solution of such a 
problem is quite straightforward and the question of 
the stability or instability of the system is settled 
through the determination of the sign of (IO,. To do this 
the principle of “exchange of stability” was invoked by 
assuming that aoi is zero whenever ao, is zero. With this 
assumption the system of equations governing the 
neutral (a0 = 0) perturbation function takes the fol- 
lowing form : 

(0’ - a2)‘8, = 0, (3.7) 

(0’ - a2)8, = 0. (3.8) 

Similarly, the boundary conditions at the liquid free 
surface take the following form: 

De, + Be, = 0; (0’ - a2)8, = 0, (3.9a, b) 

(D* - x4)6, - M&I, = 0. (3.9c) 

The conditions at the solid-liquid interface are given 
by: 

e,=e,=o; D(D’ - d)e, = 0, (3.9d, e, f) 

(3%) 
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and the condition at the lower solid surface is 

e, = 0. (3.9h) 

The results of the solution of these equations are given 
in Section 4. 

B. Constant rate solidijication 
The stability analysis and general formulation of the 

perturbation problem for this case follows along the 
same line as was developed for the previous case. For 
this problem the mean flow velocity is not zero, as it 
was for the first case, and has a component in the z- 
direction given by expression (2.4). Thus, again sub- 
stituting (3.6) into the equations of mass, momentum 
and energy, subtracting the mean state, and linearizing 
the resulting equations yields the following system of 
non-dimensional quations for the perturbation 
functions : 

[ 
$ - (I,&$ - (v,/ug)v* VZW’ = 0, 1 (3.10) 

- (l/.5); - (K&d)Vz T; = - ~‘2, 1 
(3.11) 

- ; - (K,/v,d)V* 1 T; = 0. (3.12) 

In this case the equations are written in terms of a 
coordinate system which is fixed with the mean 
position of the solid-liquid interface. Also, all of the 
variables in the above equations have been made 
dimensionless using the following scales of length, 
time, velocity and temperature: d, uPId, uP, and T2 
- T,, respectively. Note that the temperature gradient 
of the mean state for this case, ii;, can be obtained from 
equation (2.5). 

The boundary conditions for the present case in the 
new reference frame are identical with conditions (3.5). 

Following the same reasoning which led to the 
system (3.7)-(3.9), the following system of equations 
for the neutral perturbation amplitude functions for 
the second model are obtained: 

[(1/6)D + (l/R)@’ - a’)]@’ - a2)o = 0,(3.13) 

[(W)D + (l/PrR)(Dl - a2)]6, = ~2, (3.14) 

[D + (A/PrR)(D2 - a2)]B, = 0, (3.15) 

with the boundary conditions given by 

Dv-0; 0,=0,=0, (3.16a, b, c) 

De, - (MPrC)v = 0, (3.16d) 

at the solid-liquid interface, and 

De,+Be,=o; V=O, (3.16e, f) 

(D2 + a2)u - Z&3, = 0, W’%) 

as the liquid-free surface, and 

e, = 0, (3.16h) 

at the solid lower surface. 

4 RESULTS AND DISCUSSION 

A. Stationary process 
The solution to equations (3.7) and (3.8) can be 

immediately written in the form: 

6, = ,iOzi[ai sinh(az) + Ar+s cosh(az)], (4.1) 
* 

6, = A, sinh(az) + A, cosh(az), (4.2) 

where the eight constants of integration A( can be 
evaluated from the eight boundary conditions (3.9). 
However, the coefficients need not be determined 
explicitly since in the present study it is only desired to 
determine whether the original state is stable with 
respect to small perturbations or not. Instead, the 
common practice followed in stability analysis is 
adopted here, and the regions of stability and in- 
stability in terms of the parameters involved in each 
problem are identified. This is implemented by solving 
the algebraic equation arising from setting the de- 
terminant of the coefficients of the constants of in- 
tegration to zero, which results in an equation for the 
neutral stability curve in terms of the parameters 
involved. Figure 3 shows several of the neutral stability 
curves for this problem, where the stable region lies to 
the left of each curve and the unstable region to the 
right. 

For the stationary process the dispersion relation 
for the neutral stability curve can be written in terms of 
the Marangoni number, M, in the form: 

M = fb, 8, 41% 4 I-3, (4.3) 

where a is the perturbation wave number, B is the Biot 
modulus, jI is the non-dimensional temperature gra- 
dient across the liquid, and A is the non-dimensional 
form of the latent heat of fusion. A and K are the ratios 
of the thermal diffusivity and thermal conductivity of 
the liquid and solid phases, respectively. A, K, and A 
are usually fixed by the choice of the material used and 

t, t 1 L I 1’ II1I 1 b 10’ I II 0 100 200 300 400 

M 

FIG. 3. Effect of the Biot modulus on the stability of the 
stationary process. A = 20, p = 1.2, K = 0.7 and A = 1.5. 
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are assumed to be constants. Thus, for any given 
material the only variable parameters are /? and B. The 
exact functional form of (4.3) is quite lengthy and is 
given in the Appendix. 

In order to gain insight into the influence of the 
various parameters on the onset of convection, the 
variation of the neutral stability curve with respect to 
changes in the parameter values was studied. The 
variation of M with a for various values of B is shown 
in Fig 3 for a value of A of 20. The qualitative and 
quantitative form of these CUNC? is almost identical to 
those of Pearson [4]. It is shown in Fig. 3 that 
increasing the heat transfer rate through the upper 
surface (increasing B) stabilizes the liquid for a given 
value ofh. Also, the wave number of the most unstable 
wave increases slightly with increasing B. 

Of major interest is the effect of A, the non- 
dimensional latent heat of fusion, on the extent of the 
stability regions. As A is decmased the value of the 
critical Marangoni number (smallest value of M for 
instability) for all of these CUNCS shifts toward lower 
values of M indicating a smaller stable region. This 
variation of the critical Marangoni number with A is 
shown in Fig 4. However, as illustrated in that figure, 
Mtit deviates from its large A asymptotic value only at 
reasonably small vafues of A. For small temperature 

gradients the value of A for sodium, for instance. is of 
the order 100 (see Table 1) and would be small only for 
large temperature gradients. Therefore, the influence 
of solidification upon the destabilization process for 
the stationary process, i.e. the deviation from the 
calculations of Pearson [43, is small for moderate 
temperature gradients but is a destabilizing effect as 
the temperature gradient is increased. Note that the 
present boundary conditions correspond to the con- 
ducting case of Pearson. Also, as A becomes large the 
liquid velocity becomes small [see equation (3.5g)J and 
the results are expected to approach those for a non- 
solidifying hquid, as can be seen in Fig. 4. 

Since A is the most important parameter for this 
study, the effect of the remaining parameters on the 
neutral stability CUNCS for the stationary process will 
not be shown here. Their influence can be easily 
calculated for any given material. 

B. Constant rate procefs 
The solution to equations (3.13)-(3X) for the 

constant rate solidification problem can also be writ- 
ten in a straightforward manner. First, the per- 
turbation velocity is given by: 

V= t 4 exP(W, (4.4) 
i=1 

300 a/11, I , 

FIG. 4. Efkct of the latent heat on the stability of the stationary process. /I = 1.2, K = 0.7 and A = 1.5. 

Table 1. Values of non-dimensional parameters 

Material 

Sodium 0.0107 (loo) 83.1/ATt 0.730 1.344 0.975 1.012 
Potassium 0.0085 (100) 73S/AT 0.511 3.050 0.975 1.011 
Bismuth 0.0171 (300) 4WJA.T 1.74 0.715 1.034 1.20 
Lead 0.0206 (400) 174/AT 0.437 2.20 0.965 1.038 
Tii 0.016 (240) 93/AT 0.476 2.32 0.975 1.13 
zinc 0.0275 (450) 262,JAT 0.502 2.41 0.935 1.29 
Water 13.6 (0) 159/AT 0.255 9.41 1.090 2.008 

tTempcraturcs measured in “C. 
$Propcrtia determined at c for sodium and potassium and at 25°C for the solid phase- for 

other materials. 
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where 

1 1.2 = * a, 

1 3.4 = - )(R/6) f + {(R/S)’ + 4a2}“‘. 

Consequently, the perturbation temperature takes the 
form : 

4 = t: 4G exp[@, + Gl + 5 Ai exp(b), 
1==1 i=5 

(4.5) 

where 

1 5.6 = - (PrR/26) f * {(PrR2b)2 + 4a2]1/2, 

and 

CI = A,{(&,, + U/a + (1IJ’rR) 

x[(lm++,)2-a2J}-1; i=l,...,4, 

A,=&{1 - exp( - &)I-‘, 

15, = PrR/S. 

The perturbation temperature in the solid, on the other 
hand takes the form: 

0, = A, exp(az) + A8 exp(- 0~). (4.6) 

Again the various coefficients, A,, can be evaluated 
through the boundary conditions (3.16). The neutral 
stability curves were obtained in the manner outlined 
earlier. For this problem the functional relationship 
between the various parameters for the neutral stabi- 
lity curve takes the following form: 

I: =I@, 8, B, R J’r, Q, A, 4 CL (4.7) 

where I: is a surface tension parameter which is 
different from the Marangoni number, because the 
mean state temperature distribution in the liquid for 
this model is not linear. However, if a mean tempera- 
ture gradient defined by 

is introduced and used to define a Marangoni number, 
M, then the relationship between Z and M is given by : 

C = MIPrR. (4.8) 

However, since the parameter I: appears naturally in 
this problem, it will be used in the discussion of the 
results. 

The extra parameters that are involved in the 
neutral stability curve for the constant rate process and 
which were not involved in the stationary process are : 
R, the nondimensional form of the solid-liquid 
interface speed; Pr, the Prandtl number of the liquid; 
Q, a non-dimensional form of the heat withdrawal rate 
from the lower solid surface, and 6 and C which are the 
ratios of the densities and the specific heats of the 
liquid and solid phases, respectively. Since the speed of 
the interface is a function of the heat withdrawal rate 
from the solid, then Q and R are not independent and 
are related by the nonlinear matching condition, 
equation (2.7). However, the relationship between 
them can be made simpler if it is assumed that the 
interface speed is slow, i.e. R z O(1). With the further 
assumptions that Pr z 0(10e2) and A z O(l), which 
are true for liquid metals, the relationship may be 
linearized, taking the form: 

R = (cX/Pr)(Q + l)(QK + A)-‘. (4.9) 

All of the results that are discussed through the rest of 
this section have been obtained using this simplified 
form. Again, the specific form of equation (4.7) may be 
found in the Appendix. 

The effect of the various parameters upon the 
stability of the constant rate process will now be 
examined. First consider the influence of the rate of 
heat transfer through the lower surface of the solid, 
which is specified by the parameter Q. Increasing Q 
through qo, which increases the solidification rate, 
leads to a lower critical value of Z. Typical neutral 
stability curves for this case are shown in Fig. 5. The 
values of Q used correspond to very small values of qo, 

FE. 5. E&t of the rate of heat transfer through the solid on the stability of the constant rate process. 
Pr = 0.02, K = 0.5, d = 0.965, C = 1.04, A = 350 and B = 1.0. 
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typically of the order 0.1-0.5 J/s cm’. It is interesting to 
note that the wave numbers at the critical values of Z 
are approximately constant and equal to 2.0-2.2. This 
corresponds to a most critical wave length of about 

On other increasing rate heat 
transfer through upper surface, increas- 

B, the flow (Fig. 6). This result is identical 
that in first and obtained 

Pearson for liquid. that 
of can varied changing the 

of liquid the heat-transfer q and its 
variation has no effect on the solidification rate R. 

A, the latent heat parameter, may be changed by 
changing L/cp, for constant (T2 - T,) or vice versa. 
Different materials will have different values of L/c,,,, as 
shown in Table 1, and this will result in different values 
ofhforagiven(T, - T,). The effect of the change of A 
through change of L/c,,, upon Z,,, is shown in Fig. 7. 
Materials with higher values of L/c,,, are more stable. 
Note that R, the nondimensional rate of solidification, 
decreases as A is increased or Q is decreased [equation 

(4.9)]. 
Changing A by changing ( Tz - T,) results also in a 

change in Q. In general, the effect is similar to that 
shown in Fig. 7. On the whole, the effect of changing A 
for this model is in the same direction as that in the first 
model, namely, lower values of A lead to smaller 
regions of stability, as shown in Fig. 8. The value of the 
critical Marangoni number approaches that for no 
solidification for large values of A, even though the 
comparison is not easily inferred since the present 
problem involves extra parameters. The effect of 
solidification is much greater for the constant rate 
process than for the stationary process and indicates 
that solidification has a strong destabilizing influence 
in this case. 

The parameters Pr, K, S and C are constant for a 
given material. However, the effect of these parameters 
on the stability of this configuration was examined so 
that comparison could be made of the relative stability 
of different materials. The Prandtl number can vary 
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FIG. 6. ElTect of the Biot modulus on the stability of the 
constant rate process. Pr = 0.01, K 2: 0.5, 6 = 0.975, 

C = 1.01, A = 175 and Q = 1.0. 
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FIG. 7. Effect of the latent heat parameter on the stability of 
the constant rate process (Tz - T, constant). Pr = 0.01, 

Q = 2.0, K = 0.7, 6 = 1.0, C = 1.0 and B = 1.0. 
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FIG. 8. Effect of latent heat parameters on the critical 
Marangoni number for the constant rate process. Pr = 0.01, 

K = 0.7, Q = 2.0, 6 = 1.0, C = 1.0 and B = 1.0. 

over many orders of magnitude depending upon the 
material (Table 1). Because R is inversely proportional 
to Pr, calculations were performed at a constant 
R = 1.0 by varying A simultaneously with Pr. The 
variation of the critical value of I: with Pr for this case 
is shown in Fig. 9. However, the variation of the critical 
Marangoni number with Pr is quite small, as sum- 
marized in Table 2. 
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Pr 

FIG. 9. Effect of the Prandtl number on the stability of the 
constant rate process. R = 1.0, Q = 1.0, K = 0.7, 6 = 1.0, 

C=l.OandB=l.O. 

Table 2. E5ect of Pr on stability for R = 1.0; Q = 1.0; 
B = 1.0; K = 1.0; P = 1.0; c = 1.0 

Pr A x WI, M era a&,) 

0.002 loo0 4.96 x l(r 99.2 2.2 
0.01 200 9.96 x 10s 99.6 2.2 
0.1 20 1.05 x lo3 101.8 2.2 
0.3 6.0 3.59 x 10’ 107.7 2.2 
0.6 2.7 2.00 x 102 120.0 2.1 
0.9 1.5 1.45 x lo2 130.5 1.9 

The effect ofdensity and specific heat ratios, 6 and C, 
upon the critical value of X is shown in Figs. 10 and 11. 
The greater the increase in the density of the material 
upon solidification, i.e. the lower the value of 6, the 
more stable is the flow. Materials such as bismuth and 
water with values of 6 > 1 are somewhat less stable 

It should be noted that the Marangoni number for 
the most single component systems known to the 
authors will be negative for the problems discussed. 

than materials with 6 < 1. The same conclusion can be 

This apparent discrepancy with previous work has 

drawn for increasing the specific heat ratio, C. K, the 

been discussed by Seki et al. [IS]. 

ratio of the coefficients of thermal conductivity, can be 
shown to have no effect on the stability of the system. 

5. CONCLUDING REMARKS 

Some general conclusions concerning the possibility 
for onset of convective motion in a planar solidifying 
system with a vertical temperature gradient at zero 
gravity can be drawn from the analysis of the two 
models discussed above. The most important con- 
clusion is that solidification, through the parameter A, 

IO I I 1 I I I 
. 
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FIG. 10. Effect of the density change on the stability of the 
constant rate process. Pr = 0.01, A = 175, Q = 1.0, K = 0.7, 

B = 1.0 and R = 1.1. 
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C 

FIG. 11. E5ect of the specitic heat ratio on the stability of the 
constant rate process. Pr = 0.02, A = 175,Q = 1.0, K = 0.5, 

6 = 1.0, B = 1.0 and R = 0.06. 

has a destabilizing effect. The critical Marangoni 
number is always smaller for solidifying fluid layers 
than for those not undergoing a phase change. The 
magnitude of the change in the critical Marangoni 
number depends upon the configuration of the sol- 

In addition, it can be concluded that increasing the 

idifying system. This conclusion indicates the impor- 

solidification rate by increasing the heat-transfer rate 
through the lower solid surface (increasing q,,) de- 
stabilizes the flow. On the other hand, increasing the 

tance of carefully designing reduced gravity experi- 

perturbation heat-transfer rate through the upper 

ments to provide adequate isothermal conditions so 

surface of the liquid (increasing B) stabilizes the flow. 
In almost all of the cases which were investigated, it 
was found that the wave number of the most unstable 

that convection driven by surface tension will not 

disturbance is about 2.0-2.2, and this wave number is 

occur. 

only a function of B. 
Materials with larger values of density and specific 

heat ratios, 6 and C, are less stable than those with 
lower ratios. The Prandtl number, however, has a 
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small effect on the critical Marannoni number for a surface tension and surface viscosity, J. Fluid Mech. 19, 

constant R. On the other hand, the thermal con- 321 (1964). 

ductivity ratio K has no effect on the stability of the 6. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in 

flow. 
Solids. Clarendon Press, Oxford (1959). 

7. L. I. Rubenstein, The Stefan Problem. Trans. Math. 
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APPENDIX where 

Exacr Form of Ihe Dispersiou Refat~~~ C=cosho; S-sinha 

The exact functional form of the dispersion relation for the The functional form of the dispersion re&ion for the 
stationary process stability calculations, equation (4.3), is: constant rate process, equation (4.7). is given here in a slightly 

difkrent form from that of equation (4.7). The exact form of 

M-8 
Ds cosha - aD2f3 

(Al) 
this relation can be written as 

& (cotba - a/3) - D, det [A] = 0 

where D,, D1 and D, are the following determinants: 

(1 + B - az/3)C + S 

(a/3 - aB/3)S 

4 = 4a(S - UC)/3 2aC 

aC+BS 

D2= 0 
I 

aK 

aC+BS 

Ds= 0 

(1 + B - K2/3fc + 

(a/3 - a3/3)S 

4a(S - aC)/3 

2SC-a 

2c+4as= I (A21 

ZSC-a 

2SC + 4us 

26A 

-lj;i-S-KaC 

S 

2aC I 

(A3) 

t.44) 

Ka 
2&A 

K --Ka 
BA 
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where [A] is a 6 x 6 matrix, whose individual coefficients are 
the following: 

ari = C* 

ezI = 1, 

a31 = exp(&) 

a41 = (& + WI 

osf = (b + AI+ W, exp(L + A,) 

abl = {A: + a’ - I;a2C, exp(k)}l, 

cl5 = cl6 = 1 

(i = 1, . . ., 4) 

al, = alb = a,, = as6 = 0 

a45 = 4 

a46 - - 4 

ass = 1, + B 

as6 = A, + B 

abs = - Ea2 exp(l,) 

ae6 f - Za2 exp(&) 

where C,, I, and 1, are defined in Section 4(B). 

INFLUENCE DE LA SOLIDIFICATION SUR LA TENSION INTERFACIALE 
GOUVERNEE PAR LA CONVECTION 

Rhmk - On Ctudie l’effet de la solidification sur la tension interfaciale gouvernit par un environnement B 
gravitt rtduite. On analyse deux configurations simples mais rialistes representant la solidification dun 
mattriau simple. L’analyse montre qu’en consequence du mecanisme de solidification, le nombre de 
Marangoni critique atteint des valeurs faibles, ce qui indique que la solidification a un effet destabilisant sur le 
liquide. On en con&t que la convection peut apparaitre dans la phase liquide a des nombres de Marangoni 
plus faibles quand la solidification est prisente qu’en son absence. On discuteet on analyse les effets des autres 

paramitres introduits dans Ie mecanisme de la solification. 

DER EINFLUD DES ERSTARRUNGSVORGANGS AUF DURCH 
OBERFLACHENSPANNUNG BEDINGTE KONVEKTION 

hsammahmog - Der EiiuB des Erstammgsvorgangs auf das Einsetxen von durch Oberfliichcnspan- 
nung verumachter Konvektion wird in einer Umgebung mit verminderter Schwerkraft tmtersucht Zwei 
einfache, jedoch physikalisch wirktichkeitsnahe Anordnungen, die das Erstarren eines einfachen Materials 
wiedergeben, werden behandelt. Die Untersuchung xeigt, da0 die kritische Marangoni-Zahl als Folge des 
Erstammgsvorgangs zu niedrigeren Werten bin verschoben wird tmd dag das Erstarren eine destabilisieren- 
de Wirkung auf die Fliissigkeit hat. Aus diesem Ergebnis wird geschlossen, da8 in der fliissigen Phase die 
Konvektion, wenn Erstarrung statffindet, bei niedrigeren Marangoni-Zahlen ausgeliist wird, ah wenn dieses 
nicht da Fall ist. Die Eiiiisse anderer Parameter des Erstarrungsvorgangs werden untersucht und 

besprochen. 

BJIUIIHHE 3ATBEPAEBAHHR HA KOHBEKLWO, BbI3bIBAEMYIO 
nOBEPXHOC7HbIM HATZKEHWEM 

Ammmuu - NCCJWtyeTCB BJIHKHHe 3aTBepJleBaHHs Ha B03HWKHOBeHHe KOHBeKuHH, 06yCJlOBJteHHOfi 
noaepxnocTHbrM HaTxreHHeM, B ~CK~BHKX ocna6netfHoii ~~~BHT~UHH. A~axm~pyro~cn nee npocTbre, 
HO @~HYCEKH pcamcniwcK~e ~~~$HtypattHH. Il~IlCTaBJtKlomHe 3aTBepBeBaHHe ITpOCTMX MaTe- 
pHallOB. A~a.3~3 llOKa3blaaeT. ST0 B pe3yJtbTaTe npOWCCa 3aTBepBeBaHHK KpHTHYeCKoC 3HaWHHe 
9HCna MapaHrOHH CMetllaeTCR B CTOpOHy MeHbmHX 3Ha’IeHHit. CBHneTeJtbCTByR 0 JleCTa6HJtHOHpyHnUeM 
BJTHRHHH 3aTBepJleBaHHB Ha XHnKOCTb. N3 3TOrO CJleLtyeT. ‘(TO npH HanH’iHH 3aTrSpxeaaHHs KOHBeKuHR 
B KOiRKOk @ale MOXeT B03HHl(aTb npH 6onee MeHbmHX 3Ha’teHHRX ‘tHCJla MapaHrOHH, 9eM npH er0 
OTCyTCTBHH. AHaJlH3HpyeTcn H 06CyWIaeTCK BJlHRHHe BpyrHX napaMeTpOB. tlOKBJtBH)mHXCR B llpOUeCCe 


